徐魁文,教授,博士生导师,杭电绍兴集成电路研究院副院长。2014年6月获浙江大学电子科学与技术博士学位,先后在新加坡国立大学与香港城市大学毫米波与太赫兹国家重点实验室作访问学者。主要从事电磁反演计算、人工智能赋能EDA技术、射频集成电路设计等方向研究。主持/参与国家自然科学基金青年/面上、国家自然基金重大、浙江省重点研发以及装备预研等项目10余项,发表SCI论文76篇,其中IEEE Transactions论文 30余篇,长期担任Electronic Letters编委,2023年任IEEE Transactions on Geoscience and Remote Sensing编委,2022年获得国际应用计算电磁学会青年科学家奖。担任杭州市人工智能学会常务理事,2023年入选浙江省“院士结对计划”。近年来,围绕电磁反演与测试、EDA技术与工具、AI智能计算、建模与设计等方向开展了大量创新性研究工作,取得了一系列研究成果。 1.1 电磁反演理论与测试系统:(1)提出了收缩耦合电磁积分方程模型及减小模型非线性度新机理,突破了传统方法在强散射目标反演中不收敛的限制, 发展了一系列解决高度非线性反演问题的定量成像理论与方法;(2)阐明了物理及先验知识与深度学习网络之间的融合机理,设计了快速提取物理信息的策略,并建立了融入物理方程与先验知识的深度学习网络全波反演架构与方法;(3)基于积分方程的物理模型框架, 报道了利用深度学习网络实现感应电流/电通量密度的空域映射,建立了融入物理信息的电磁散射正向计算网络;(4)研发的实时成像与全波检测方法已成功应用于杭州芯影科技有限公司的物流检测项目、浙江诺益公司的干扰源快速重构项目,以及中电科41所的无损检测项目中。 
图 1 电磁全波反演计算与AI反演技术 1.2 电磁场仿真EDA工具领域:课题组团队研制出针对 RF/MMIC 的芯片电磁分析工具 UltraEM、以及针对封装电子产品仿真工具 SuperEM,可满足对复杂芯片版图和封装的高效、快速仿真计算;并建立了基于全波电磁仿真分析的电磁源反演模型,实现了高精度的电磁源反演方法;研制出针对CMOS和化合物半导体工艺建模软件,实现芯片器件建模国产化。 
图 2 课题组团队微电子PDK建模与EDA工具技术 1.3 AI射频器件建模与仿真:提出了基于物理规范和先验知识驱动下的深度学习电磁全波反演网络新架构,破解了大规模网格剖分下全波反演的快速计算难题,构建了非线性电磁反演和深度学习网络拟合之间的耦合机制,为实现实时全波反演成像提供了创新解决方案;并提出了基于物理规范下的深度学习电磁散射正演网络新方法,发展了基于物理方程下智能电磁计算的新方向,破解了大规模网格下全波电磁散射的高速计算难题,为大规模快速电磁计算、电磁仿真以及多物理仿真提供了一种新的解决方案;基于上述AI赋能全波电磁计算方法,开展了基于机器智能的射频器件反演设计工作,提出了一种结合小波变换深度学习的高质量采样逆向设计方法,针对发夹型滤波器能准确预测不同工作频点、带宽的几何参数,初步实现了“指标工艺”进,“原理图版图”出的快速自动化设计。 
图 3AI赋能电磁计算与器件智能设计
2009.9–2014.7,博士研究生,电磁场与微波技术,信息电子工程学系,浙江大学 2012.8–2013.3,交流博士生,电磁场与微波技术,新加坡国立大学 2005.9–2009.6,大学本科, 电子信息工程,电子信息学院,杭州电子科技大学
2021.1 –至今 教授,博导,杭州电子科技大学,电子信息学院
2019.1 – 2020.12 副教授,杭州电子科技大学,电子信息学院 2015.8 – 2018.12 特聘副研究员,杭州电子科技大学,电子信息学院 2018.8 – 2018.11 访问副教授,香港城市大学太赫兹及毫米波重点实验室 合作导师:IEEE fellow Prof.CHAN,Chi-Hou陈志豪教授 2014.7 – 2015.8 杭州华为技术有限公司通信技术实验室高级工程师
1. IET旗下SCI杂志Electronic letters 副主编; 2. 2017年度全国微波毫米波会议的程序技术委员会委员 3. 2018年IEEE集成电路技术与应用大会的程序技术委员会委员 4. 2020年IEEEMTT-S 国际微波学术讨论会的程序技术委员会委员 5. 中国电子学会会员,浙江省电子学会会员 6. Frontiers评审编辑(Review Editor) 7. 担任IEEE TMTT,TAP,TGRS,TCI,AWPL,MWCL等20多种国内外期刊的审稿人。 8. 担任IEEE-APS、PIERs、ICCEM、ACES、全国微波年会等国际国内学术会议的分会主席与组织者
一、AI驱动的电磁场计算与加速仿真主要涉及开发更高效的电磁计算算法,以加速高频电磁场仿真(如FDTD、FEM、MoM等),减少计算资源需求;开发高效的并行算法,以充分利用GPU、FPGA等硬件加速器;利用机器学习(ML)和深度学习(DL)技术,构建电磁场仿真的代理模型(Surrogate Model),以替代部分高计算成本的仿真过程; 
图1. 高效电磁仿真与计算 二、物理耦合AI增强的射频器件与芯片反演设计EDA关键技术传统的射频器件需要依赖人工在三维全波电磁仿真软件(CST、HFSS以及FEKO等)中的几何参数经验设计优化,本课题组主要面向射频器件的反演设计,主要包括:基于芯片级的滤波器、电磁防器件护、前端天线优化设计,反演设计不仅需要传统的优化算法(梯度法、启发式算法、人工智能方法等),同时还需要借助目前盛行的深度学习算法,实现基于人工智能技术的射频器件反演自动化设计。 
图2. 射频器件反演自动化设计 三、智能反演计算与测试系统主要涉及到电磁反演算法与测试系统,包括基于物理方程的反演计算方法、基于机器学习物理耦合的加速反演计算方法、以及MIMO-SAR成像方法;在此基础上开发新体制无损检测系统、电磁EMI诊断与测试,以及相应的测试硬件系统。 
图3. 智能反演方法与测试系统
纵向科研
1. 基于物理机制式深度神经网络的电磁逆散射成像方法研究,2020.1-2023.12, 国家自然科学基金面上项目,61971174,经费59万,主持,在研; 2. 非均匀背景下电磁波逆散射的强非线性问题及其快速成像方法研究,2017.1-2019.12,国家自然科学基金青年项目,61601161,经费21万,主持,已结题; 3. 基于电磁波逆散射的脑中风检测与超分辨成像方法研究,2019.1-2021.12,浙江省自然科学基金一般项目,LY19F010012,经费10万,主持,已结题; 4. 基于电磁波逆散射的超分辨率生物医学成像方法研究,2018.1-2019.12,微波与毫米波国家重点实验室开放基金项目,K201822,经费4万,主持,已结题; 5. 基于深度学习的定量微波成像方法研究,2020.01-2022.12, 中国博士后科学基金项目, 2019M66198,经费8万,主持,在研; 6. 基于深度学习的实时超分辨微波成像方法研究,2021.1-2022.12,钱江实验室开放基金项目,2020-Y5-A-021,经费20万,主持,在研; 7. 电磁场的媒质调控,2021.1-2023.12,浙江省杰出自然科学基金项目,LR21F010002,直接经费80万,第一参与人,在研; 8. 超构材料中基元非对称性的禁带关联机制及场量调控研究,2019.1-2022.12, 国家自然科学基金面上项目,61875051,经费64万,第一参与人,在研; 9. 高性能计算环境下EDA 工具移植与集成,2018.1-2022.12,科技部国家重点研发计划子课题,经费40万,主要参与人,在研; 10. 射频集成电路设计全流程EDA 平台,2021.1-2023.12,浙江省科技计划项目-重点研发计划-择优委托项目,2021C01041,经费2000万,主要参与人,在研; 11. 面向开源电路设计的EDA技术研究,2020.1-2023.12,科技部国家重点研发计划子课题,2019YFB2205003,经费90万,主要参与人,在研;
横向科研
1. 车联网大数据软件开发,2016-2017,浙江力石科技股份公司,经费120万,主要参与人,已结题; 2. 智慧园区/景区综合管理软件平台,2018-2020,浙江力石科技股份公司,经费180万,主要参与人,已结题; 3. 8路以太网摄像机及2路GSML摄像机输出验证,2018-2019,思尔芯信息科技有限公司,经费20万,主要参与人,已结题; 4. 基于脑电信号的癫痫发作检测算法研究,2018-2019,杭州妞诺科技有限公司,经费10万,主要参与人,已结题; 5. LTCC基板测试分析,2021-至今,中国科学院空天信息创新研究院,经费12万,主持,在研; 6. 脑电信号异常检测技术研究,2021-2024,杭州妞诺科技有限公司,经费12万,第一参与人,在研。
论文
节选代表性论文 2022年
1. L. Peng, H. Ren, Y. Chao, T. Lan, K. Xu, D. Ye, X. Luo, H. Sun, S. Xu, H. Chen, and S. Zhang, "Spin Hall effect of transversely spinning light," Science Advances, vol. 8, no. 34, 2022, doi: DOI: 10.1126/sciadv.abo6033. 2. K. Xu, Q. Wang, L. Lv, Q. Zhang, S. Sun, F. Luo, X. Luo, L. Peng, and G. Wang, "SIW based Ka-band leaky-wave antenna with improved beam steering performance," IEEE Antennas and Wireless Propagation Letters, vol. 21, no. 11, pp. 2224-2228, Nov. 2022. 3. F. Luo, J. Wang, J. Zeng, L. Zhang, B. Zhang, K. Xu*, and X. Luo, " Cascaded complex U-net model to solve inverse scattering problems with phaseless-data in the complex domain," IEEE Transactions on Antennas and Propagation, vol. 70, no. 8, pp. 6160-6170, Aug. 2022. 4. K. Xu, C. Zhang, X. Ye and R. Song, "Fast full-wave electromagnetic inverse scattering based on scalable cascaded convolutional neural networks," IEEE Transactions on Geoscience and Remote Sensing, vol. 60, Jan. 2022. 5. F. Shen, Y. Gao, L. Li, B. Zhang, K. Xu and L. Ran, "Wideband microwave sensor for downhole water-cut monitoring," IEEE Transactions on Geoscience and Remote Sensing, vol. 60, pp. 1-12, 2022, Art no. 5914512. 6. T. Yin, C. -F. Wang, K. Xu, Y. Zhou, Y. Zhong and X. Chen, "Electric flux density learning method for solving three-dimensional electromagnetic scattering problems," IEEE Transactions on Antennas and Propagation, doi: 10.1109/TAP.2022.3145486. 7. R. Song, Y. Huang, X. Ye, K. Xu, C. Li and X. Chen, "Learning-based inversion method for solving electromagnetic inverse scattering with mixed boundary conditions," IEEE Transactions on Antennas and Propagation, vol. 70, no. 8, pp. 6218-6228, Aug. 2022. R. Song, M. Li, K. Xu, C. Li and X. Chen, "Electromagnetic inverse scattering with an untrained SOM-Net," IEEE Transactions on Microwave Theory and Techniques, vol. 70, no. 11, pp. 4980-4990, Nov. 2022.
2021年
1. P. Zhao, L. Liu, K. Xu*, X. Ye, S. Chen, G. Wang, and C. Chan, "An improved subspace-regularized DBIM-MLGFIM method for three-dimensional inverse scattering problems," IEEE Transactions on Antennas and Propagation, vol. 69, no. 5, pp. 2798-2809, May. 2021. 2. H. Jiang, K. Xu*, Q. Zhang, Y. Yang, D. K. Karmokar, S. Chen, P. Zhao, G. Wang, L. Peng, "Backward-to-forward wide-angle fast beam-scanning leaky-wave antenna with consistent gain," IEEE Transactions on Antennas and Propagation, vol. 69, no. 5, pp. 2987 - 2992, May. 2021. 3. Z. Ma, K. Xu*, R. Song, C. -F. Wang and X. Chen, "Learning-based Fast Electromagnetic Scattering Solver through Generative Adversarial Network," IEEE Transactions on Antennas and Propagation, vol. 69, no. 4, pp. 2194 - 2208, April. 2021. 4. Y. Chu, K. Xu*, F. Shen, and G. Wang, "Multiplicatively regularized iterative updated background inversion method for inverse scattering problems," IEEE Geoscience and Remote Sensing Letters., vol. 18, no. 6, pp. 999-1003, June 2021. 5. R. Song, Y. Huang, K. Xu, X. Ye, C. Li and X. Chen, "Electromagnetic inverse scattering with perceptual generative adversarial networks," IEEE Transactions on Computational Imaging, vol. 7, pp. 689-699, 2021, doi: 10.1109/TCI.2021.3093793. 6. Y. Huang, R. Song, K. Xu, X. Ye, C. Li and X. Chen, "Deep learning-based inverse scattering with structural similarity loss functions," IEEE Sensors Journal, vol. 21, no. 4, pp. 4900-4907, 15 Feb.15, 2021, doi: 10.1109/JSEN.2020.3030321.
2020年
1. K. Xu, L. Wu, X. Ye and X. Chen, "Deep learning-based inversion methods for solving inverse scattering problems with phaseless data," IEEE Transactions on Antennas and Propagation, vol. 68, no. 11, pp. 7457-7470, Nov. 2020. 2. K. Xu, L. Zhang, and Z. Wei, “Fourier bases-expansion contraction integral equation for inversion highly nonlinear inverse scattering problem”, IEEE Transactions on Microwave Theory and Techniques., vol. 68, no. 6, pp. 2206 - 2214, Mar. 2020. 3. L. Zhang, K. Xu*, R. Song, X. Z. Ye, G. Wang and X. Chen, " Learning-based quantitative microwave imaging with a hybrid input scheme," IEEE Sensors Journal, vol. 20, no. 24, pp. 15007-15013, 15 Dec.15, 2020. 4. Lu. Zhang, K. Xu*, Y. Zhong and K. Agarwal, " Solving phaseless highly nonlinear inverse scattering problems with contraction integral equation for inversion," IEEE Transactions on Computational imaging, vol. 6, pp. 1106-1116, July, 2020. 5. M. Tan, J. Zhou, K. Xu*, Z. Peng, and Z. Ma, “Static hand gesture recognition with electromagnetic scattered field via complex attention convolutional neural network,” IEEE Antennas and Wireless Propagation Letters., vol. 19, no. 4, pp. 705 - 709, April. 2020. 6. X. Ye, Y. Bai, R. Song, K. Xu and J. An, "An inhomogeneous background imaging method based on generative adversarial network," IEEE Transactions on Microwave Theory and Techniques, vol. 68, no. 11, pp. 4684-4693, Nov. 2020. 7. H. Gan, W. Zhao, L. He, Y. Yu, K. Xu, F. Wen, L. Dong, and G. Wang, "A CSRR-loaded planar sensor for simultaneously measuring permittivity and permeability," IEEE Microwave and Wireless Components Letters, vol. 30, no. 2, pp. 219-221, Feb. 2020, doi: 10.1109/LMWC.2019.2957657. 8. W. Zhao, H. Gan, L. He, Q. Liu, D. Wang, K. Xu, S. Chen, L. Dong, G. Wang, "Microwave planar sensors for fully characterizing magneto-dielectric materials," IEEE Access, vol. 8, pp. 41985-41999, 2020, doi: 10.1109/ACCESS.2020.2977327. 9. Y. Zhong, M. Salucci, K. Xu, A. Polo, and A. Massa, “A multiresolution contraction integral equation method for solving highly nonlinear inverse scattering problems,” IEEE Transactions on Microwave Theory and Techniques., vol. 68, no. 4, pp. 1234 - 1247, 2020. 10. X. Ye, N. Zhang, K. Xu, K. Agarwal, M. Bai, D. Liu, and X. Chen, "Application of subspace-based distorted-born iteration method in imaging biaxial anisotropic scatterer," IEEE Transactions on Computational Imaging, vol. 6, pp. 1486-1492, 2020, doi: 10.1109/TCI.2020.3032673. 11. Q. Zhang, D. Ma, X. Tang, G. Zhang, Z. Zhan, K. Xu, X. Ye, Y. Sun and R. Murch, "1-D frequency-diverse single-shot guided-wave imaging using surface-wave Goubau line," IEEE Transactions on Antennas and Propagation, vol. 68, no. 4, pp. 3194-3206, 2020. 12. S. Chen, F. Zhou, K. Xu, P. Zhao, Y. Yang, X. Zhu, and G. Wang, "A Portable Microwave Interferometry Sensor for Permittivity Detection Based on CCMRC," IEEE Access, vol. 8, pp. 140323-140332, 2020, doi: 10.1109/ACCESS.2020.3007783. 13. F. Shen, H. Li, K. Xu, T. Zhou, N. M. Idrees, C. Li, and L. Ran, “Induction logging through casing by detecting lateral waves: a numerical analysis,” IEEE Transactions on Geoscience and Remote Sensing, vol. 58, no. 4, pp. 2937 - 2946, 2020. 14. T. Zhou, H. Li, K. Xu, Q. Lv, and T. Denidni, " Experimental investigation on subwavelength imaging with temporal–spatial random illuminations," IEEE Transactions on Instrumentation and Measurement, vol. 69, no. 1, pp. 2659-2661, 2020.
2019年
1. Y. Chu, K. Xu*, Y. Zhong, X. Ye, T, Zhou, X. Chen, and G. Wang, “Fast microwave through wall imaging method with inhomogeneous background based on Levenberg-Marquardt algorithm”, IEEE Transactions on Microwave Theory and Techniques., vol. 67, no. 3, pp. 1138 - 1147, March, 2019. 2. L. Dong, Z. Qiao, H. Wang, W. Yang, W. Zhao, K. Xu, G. Wang, L. Zhao, and H. Yan, “The gas leak detection based on a wireless monitoring system,” IEEE Transactions on Industrial Informatics., vol. 15, no. 12, pp. 6240 - 6251, 2019. 3. H. Li, C. Ma, F. Shen, K. Xu, D. Ye, J. Huangfu, C. Li, L. Ran, and T. A. Denidni, "Wide-angle beam steering based on an active conformal metasurface lens," IEEE Access, vol. 7, pp. 185264-185272, 2019, doi: 10.1109/ACCESS.2019.2960639. 4. Z. Gu, J. Wang, F. Shen, K. Xu, D. Ye, J. Huangfu, C. Li, and L. Ran, “Blind separation of doppler human gesture signals based on continuous-wave radar sensors,” IEEE Transactions on Instrumentation and Measurement., vol. 68, no. 7, pp. 2659 - 2661, 2019. 5. T. Zhou, F. Shen, K. Xu, Z. Tang, J. Wang, B. Zhang, D. Ye, J. Huangfu, C. Li, and L. Ran, “Microwave imaging customized on demand under random field illumination”, IEEE Transactions on Microwave Theory and Techniques., vol. 67, no. 3, pp. 1148 - 1156, 2019. 6. T. Zhou, F. Shen, Q. Meng, H. Li, K. Xu, D. Ye, J. Huangfu, S. Dong, T. A. Denidni and L. Ran, "Towards real-time through-obstacle imaging based on compressed sensing for sparse objects," IET Microwaves, Antennas & Propagation, vol. 13, no. 13, pp. 2290-2296, 30 10 2019, doi: 10.1049/iet-map.2019.0238.
2018年
1. K. Xu, Y. Zhong, X. Chen and D. Lesselier, “A fast integral equation-based method for solving electromagnetic inverse scattering problems with inhomogeneous background,” IEEE Transactions on Antennas and Propagation., vol. 66, no. 8, pp. 4228-4239, May, 2018. 2. K. Xu, Y. Zhong, and G. Wang, “A hybrid regularization technique for solving highly nonlinear inverse scattering problems,” IEEE Transactions on Microwave Theory and Techniques., vol. 66, no. 1, pp. 11-21, Jan, 2018. 3. K. Xu, Y. Liu, S. Chen, P. Zhao, L. Peng, L. Dong, and G. Wang “Novel microwave sensors based on split ring resonators for measuring permittivity,” IEEE access., vol. 6, pp. 26111 - 16120, May, 2018. 4. K. Xu, Y. Liu, L. Dong, L. Peng, S. Chen, F, Shen, X. Ye, X. Chen and G. Wang, “Printed multi-band compound meta-loop antenna with hybrid-coupled split ring resonators,” IET Microwaves, Antennas & Propagation., vol. 12, no. 8, pp. 1-8, Jun, 2018. 5. X. Qi, L. Chen, K. An, J. Wang, C. Ma, B. Zhang, K. Xu, H. Li, D. Ye, J. Huangfu, C. Li, and L. Ran “Wireless indoor positioning with vertically uniform alternating magnetic fields,” IEEE Transactions on Instrumentation and Measurement., vol. 67, no. 11, pp. 2733 - 2735, Aug, 2018. 6. X. Qi, L. Chen, K. An, J. Wang, B. Zhang, K. Xu, D. Ye, C. Li, and L. Ran “Bioinspired in-grid navigation and positioning based on an artificially established magnetic gradient,” IEEE Transactions on Vehicular Technology., vol. 67, no. 11, pp. 10583 - 10589, Aug, 2018. 7. S. Chen, M. Guo, K. Xu, P. Zhao, L. Dong and G. Wang, "A frequency synthesizer based microwave permittivity sensor using CMRC structure," IEEE Access, vol. 6, pp. 8556-8563, 2018, doi: 10.1109/ACCESS.2018.2808362. 8. H. Wang, L. Dong, W. Wei, W. -S. Zhao, K. Xu and G. Wang, "The WSN monitoring system for large outdoor advertising boards based on ZigBee and MEMS sensor," IEEE Sensors Journal, vol. 18, no. 3, pp. 1314-1323, 1 Feb.1, 2018, doi: 10.1109/JSEN.2017.2770324. 9. S. Chen, M. Guo, K. Xu, P. Zhao, Y. Hu, L. Dong, and G. Wang, "A Dielectric Constant Measurement System for Liquid Based on SIW Resonator," IEEE Access, vol. 6, pp. 41163-41172, 2018, doi: 10.1109/ACCESS.2018.2857514. 10. L. Peng, S. Sang, Z. Wang, H. Jin, A. Wu, K. Xu, and G. Wang, "Wideband radiation from an offset-fed split ring resonator with Multi-Order resonances," IEEE Antennas and Wireless Propagation Letters, vol. 17, no. 12, pp. 2198-2202, Dec. 2018, doi: 10.1109/LAWP.2018.2871040.
2017年
1. F. Liu, K. Xu*, P. Zhao, L. Dong and G. Wang, “A uniplanar dual-band printed compound loop antenna for WLAN/WiMAX applications,” Electronic Letters., vol. 53, no. 16, pp. 1083-1084, Aug, 2017. 2. K. Xu, F. Liu, L. Peng, W. Zhao, L. Ran, and G. Wang “Multimode and wideband printed loop antenna based on degraded split-ring resonators,” IEEE access., vol. 5, pp. 15561 -15570, Jul, 2017. 3. H. Li, F. Shen, D. Ye, K. Xu, S. Qiao, Y. Sun, W. Zhu, C. Li, and L. Ran, " Theory and Implementation of Scattering-Dark-State Particles at Microwave Frequencies," IEEE Transactions on Antennas and Propagation., vol. 65, no. 12, pp. 7119-7128, Dec, 2017.
2012 - 2016年
1. W. -S. Zhao, J. Zheng, F. Liang, K. Xu, X. Chen and G. Wang, "Wideband modeling and characterization of differential through-silicon vias for 3-D ICs," IEEE Transactions on Electron Devices, vol. 63, no. 3, pp. 1168-1175, March 2016, doi: 10.1109/TED.2016.2516345. 2. K. Xu, Y. Zhong, R. Song, X. Chen and L. Ran, “Multiplicative-regularized FFT twofold subspace-based optimization method for inverse scattering problems,” IEEE Transactions on Geoscience and Remote Sensing., vol. 53, no. 2, pp. 841-850, Feb, 2015. 3. K. Xu, D. Ye, Z. Zhu, J. Huangfu, C. Li and L. Ran, “Analytical beam forming for circularly symmetric conformal apertures,” IEEE Transactions on Antennas and Propagation., vol. 63, no. 4, pp. 1458-1464, 2015. 4. J. Zhao, Z. Zhu, W. Cui, K. Xu, B. Zhang, D. Ye, C. Li and L. Ran, “Power Synthesis at 110-GHz Frequency Based on Discrete Sources,” IEEE Transactions on Microwave Theory and Techniques., vol. 63, no. 5, pp. 1633-1644, May, 2015. 5. K. Xu, H. Li, Z. Zhu, J. Huangfu, C. Li and L. Ran, “Versatile beam forming with concentric excitations based on multiple Sinc/Bessel function distribution,” IEEE Transactions on Antennas and Propagation., vol. 61, no. 8, pp. 4082-4090, 2013. 6. K. Xu, Z. Zhu, H. Li, J. Huangfu, C. Li and L. Ran, “A printed single-layer UWB monopole antenna with extended ground plane stubs,” IEEE Antennas and Wireless Propagation Letters., vol. 12, pp. 237-240, 2013. 7. K. Xu, H. Li, L. Chen, J. Huangfu and L. Ran, “Spherical Bessel function based deterministic beam-forming for spherical-surfaced apertures,” Electronic Letters, vol. 49, no. 14, pp. 863-865, 2013. 8.D. Ye, Z. Wang, K. Xu, H. Li, J. Huangfu, Z. Wang and L. Ran, “Ultra-wideband dispersion control of a metamaterial surface for a perfectly-matched-layer-like absorption,” Physical Review Letters., vol. 111, no. 18, pp. 1974-1978, 2013. 9. D. Ye, Z. Wang, Z. Wang, K. Xu, B. Zhang, J. Huangfu, C. Li, and L. Ran, "Towards experimental perfectly-matched layers with ultra-thin metamaterial surfaces," IEEE Transactions on Antennas and Propagation., vol. 60, no. 11, pp. 5164-5172, 2012.
授权专利 1. 徐魁文,冉立新,“带扩展地平面开路节和半椭圆形开槽的超宽带单极子天线”,授权公告日:2014年5月21日,中国,授权专利号:CN102738580A,专利号(ZL201210227131.4); 2.徐魁文,冉立新,“基于贝塞尔函数的圆形口径场分布的阵列天线设计方法”,授权公告日:2014年12月10日,中国,授权专利号:CN102683898A,专利号(ZL201210136076.8); 3. 徐魁文,刘飞,赵文生,陈世昌,彭亮,王高峰,“一种带有扩展地全频段覆盖的手机终端MIMO 双天线”,国家发明专利,授权公告日:2019 年6 月18 日,授权公开号:CN106099348A,专利号(ZL201610551241.4); 4. 徐魁文,楚彦青,赵文生, 陈世昌,赵鹏,王高峰,“一种基于非均匀背景介质的弹性波成像方法”,国家发明专利,授权公告日:2020 年01 月31 日,授权公开号CN109239771B,专利号(ZL201810906598.9); 5. 徐魁文,刘洋,赵文生, 陈世昌,赵鹏,王高峰,“基于SRRs提高环形天线阻抗和扩展频带的方法”,国家发明专利,授权公告日: 2020 年06 月30 日,授权公开号 CN107317114B,专利号(ZL201710358569.9); 6. 张玮,徐魁文,赵鹏,王高峰,“基于电磁耦合的宽带、高隔离MIMO环天线”,国家发明专利,授权公告日: 2021 年 01 月 05 日, 授权公告号 CN109149106B,专利号(ZL201810709972.6); 7. 徐魁文,刘洋,赵文生, 陈世昌,赵鹏,王高峰,“一种用于测量介电常数的微型双层磁耦合微波传感器”,国家发明专利,授权公告日:2021 年04 月20 日,授权公开号 CN108872710B,专利号(ZL201810419905.0); 8. 徐魁文,刘洋,赵文生, 陈世昌,赵鹏,王高峰,“一种用于测量介电常数的微型三层磁耦合微波传感器”,国家发明专利,授权公告日:2021 年04 月20 日,授权公开号 CN108872266B,专利号(ZL201810419931.3); 9. 徐魁文,刘洋,赵文生, 陈世昌,赵鹏,王高峰,“一种用于测量介电常数的差分微波传感器”,国家发明专利,授权公告日:2021 年04 月20 日,授权公开号 CN108828321B,专利号(ZL201810420659.0); 10. 徐魁文,楚彦青,叶修竹,陈旭东,“一种基于电磁逆散射的早期乳腺癌检测医学成像方法”,国家发明专利,授权公告日:2021 年04 月20 日,授权公开号 CN109859173B,专利号(ZL201910016317.7); 11. 吴亮,徐魁文,马振超,张璐,“基于神经网络解决电磁逆散射问题的两步无相位成像方法”,国家发明专利,授权公告日:2021 年10 月01 日,授权公开号 CN111609787B,专利号(ZL202010471726.9); 12. 徐魁文,姜浩,段江波,刘洋,“基于微波传感器的新型高精度介电常数测试系统”, 国家发明专利,授权公告日:2021 年11 月23 日,授权公开号 CN110531165B,专利号(ZL201910766954.6); 13. 徐魁文,段江波,刘洋,徐正,陈世昌,赵文生,赵鹏,王高峰,“一种基于地板辐射模式的多频段MIMO终端天线”,国家发明专利,授权公告日:2020年09月08日,授权公开号 CN108847526B,专利号(ZL201810540045.6); 14. 姜浩,徐魁文,王权,“一种基于微带线结构的波束高扫描率天线”,国家发明专利,授权公告日:2022年04月01日, 授权公开号CN111509392B,专利号(ZL202010381490.X); 15. 徐魁文,姜浩,王权“一种基于微带线结构的一维平面周期漏波天线”,国家发明专利,授权公告日:2022年04月01日,授权公开号CN111509393B,专利号(ZL202010381975.9); 16. 吴亮,徐魁文,张璐,马振超“一种基于卷积神经网络的散射场相位恢复方法”,国家发明专利,授权公告日:2022年08月05日,授权公开号CN111610374B,专利号(ZL202010471615.8); 17. 徐魁文,姜浩,段江波,刘洋“基于SIW-CSRR的用于测量介电常数的微波传感器”,国家发明专利,授权公告日:2022年05月13日,授权公开号CN110531164B,专利号(ZL201910766950.8); 18. 徐魁文,王权,段江波,彭亮“一种基于超材料单元的高扫码率的漏波天线”,国家发明专利,授权公告日:2022年07月29日,授权公开号CN112768921B,专利号(ZL202011617947.9);
基于STM32的控制系统,软著登字第2983418号,2018SR654323,2018-08-16 基于STM32的数字电压表系统,软著登字第2987112号,2018SR658017,2018-08-17 基于MATLAB的车牌识别软件系统,软著登字第2992050号,2018SR662955,2018-08-20
1. 2017年获得杭州电子科技大学骨干教师支持计划 2. 2019年获得浙江省育才工程计划 3. 2019年获得湖州市1112工程人才计划 4. 2022年获得首届“杭电钱江学者”杰出青年 5. 2022年获得2022国际应用电磁计算会议青年科学家
|